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SUMMARY

	 Scalable software systems  are needed when moving to high resolution interactive environ-

ments. This research project presents  software architecture that enables the use of high resolution 

tiled displays for interactive group-oriented visualizations of scientific content in museums or 

classrooms. The work in this  research project builds on the current research in the field of scal-

able tiled displays and scalable tracking technology.

The contribution of  this work is:

1. Development of a decentralized particle-based simulation model suitable for real-time in-

teraction and applicable to many types of  simulations.

2. Development of an approach to efficient coupling of visualizations and particle-based 

simulations on high resolution tiled displays.

3. Application of traditional out-of-core and LOD methods  to interactive high resolution en-

vironments.

4. Application of  visualization research technology to informal science education.
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1	 Introduction and Motivation

	 High resolution tiled displays are increasingly used by researchers to visualize large data. 

When moving to high resolution environments and large interaction spaces, the ability of soft-

ware systems to scale up is crucial. Scalable high resolution tiled displays have broken the bound-

ary of limited resolution by tiling together multiple LCDs or projectors that are built around clus-

ters of computers. Scalable tracking systems have been developed for such devices, enabling 

multi-user interaction with visualizations. There is  plenty of research in the area of simulation 

and visualization using clusters  and grids, however most of it is  aimed at speeding up these proc-

esses  and displaying them back on a single screen. The assumed modes  of interaction with these 

processes range from one user to completely non-interactive systems. The motivation for this 

work is  to develop a scalable system to provide group-oriented interaction with very large scale 

simulations and visualizations using high resolution tiled displays and apply it to the domain of 

science education. Simulations and visualizations are both CPU and GPU intensive. It is possible 

to decouple these processes by running them on separate machines  or clusters, however such 

setup is  not suitable for museum or classroom settings  and requires high speed network intercon-

nection outside of the tiled display. This  research project builds on the knowledge of scalable 

tiled displays  and scalable tracking technology to provide guidelines  for developing scalable inter-

active simulations and visualizations  on tiled display hardware directly. As the proof of concept, 

this  research project implements an application called Rain Table using a high resolution tiled 

tabletop system called LambdaTable [1] developed at the Electronic Visualization Laboratory 

(EVL), which provides 24 megapixels of  interactive screen space.

	 Rain Table is  an application for large-scale interactive 2D particle-based simulation and visu-

alization on scalable high-resolution tiled displays for group-oriented interaction with geoscience 
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content. The goal of this  research project is to apply high resolution visualization technology to 

geoscience education in museums  or classrooms  to provide educators  with new means  of visualiz-

ing and simplifying the understanding of complex scientific phenomena. The work in this  project 

is   aimed at informal education in science museums, however it may potentially be of use to real 

scientists. This project implements  software that allows users to interact with visualizations by tak-

ing advantage of novel scalable tracking technology for tiled displays, developed at EVL. Rain 

Table implements an out-of-core image rendering framework that uses  tiling, on-demand texture 

paging, multi-level caching, compression, and threading techniques to minimize latencies  and 

maintain system interactivity. The core of Rain Table is  a decentralized particle-based simulation 

and visualization model that runs alongside the rendering nodes  of tiled displays. The first mile-

stone of this project is to design and implement the architecture to run and display simulations  of 

rainfall runoff and the context for these simulations, such as aerial photography, in high detail. 

The second milestone is to prepare this architecture for other types of simulations and assess  its 

scalability in terms  of data size, output resolution, communication, computation, and interaction 

space.
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Figure 1. Students interacting with a physical model of  a water table.

	 The original idea and foundation for this work revolve around watershed education and vari-

ous outreach projects  conducted by the National Center for Earth-Surface Dynamics (NCED) at 

the University of Minnesota. Figure 1 shows a group of students sprinkling water on top of a 

physical model of a region. This  is  a great way to visualize the paths water takes  though water-

sheds and how it connects  different sub-regions. However, it is  a poor substitute for the complexi-

ties  of water flow in the real world. It is  also very hard for students to think about the phenomena 

on a more global scale, because physical models are usually meant to represent very small re-

gions. Physical models are not flexible enough because a separate model has  to be built for differ-

ent types of terrains. This  process is time consuming and the resulting models take up a lot of 

space.  A solution that is more modular and versatile can help in solving these problems. 
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	 The ideal solution is a large table surface that resembles  a physical water table, but also en-

ables students to:

1. Quickly experiment over any terrain map and switch between them.

2. Take advantage of very high resolution observatory data such as satellite topography 

and aerial photography.

 The rainfall runoff simulation in Rain Table allows users to interactively explore the flow of 

water across  maps and discover the concepts of watersheds, floods, and the interconnectivity of 

river systems. Multiple users can generate water flow independently of one another, so small 

groups work together interactively, eliminating passive viewing and equalizing user’s  control of 

the visualization model.
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2	 Background and Previous Work

	 This section goes over background and previous work.

2.1.1 Tiled Display Interaction

	 The usefulness of visualization on tiled displays is  apparent as  the size of visualized data be-

comes large. This  applies to data produced by instruments in the fields of medicine, biology, geo-

science, and physics. Tiled display systems  can output more resolution and therefore display data 

in more detail. Various modes of multi-user interaction with large displays have been proposed. 

These techniques vary from laser pointers [2] to those using gestural input directly [3] and those 

using a combination of acoustics and computer vision [4]. Ball [5] suggests  that tiled displays im-

prove performance for basic visualization tasks. The findings also suggest that physical navigation 

is more common to high-resolution displays than low resolution and physical navigation is pre-

ferred. This  research suggests that high resolution displays  may be better fitted for group work. 

Display size and resolution need to grow in order to maintain the same space to user ratio for a 

group of  people.
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Figure 2. EVL’s LambdaTable.

Figure 3. LambdaTable interaction.

	 Moving on to horizontal displays, previous research suggests that tabletops are better fitted for 

co-located group work than wall displays [6]. Much of the research related to high resolution 

tiled tabletop displays  is outlined in [1], which also implements a solution for scalable multi-user 
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tracking for a high resolution tiled table, LambdaTable, shown in Figure 2. This system is used in 

this  project. LambdaTable is  a 7 by 3 foot, 24-megapixel cluster of 6 nodes build using six Dell 

LCD 2560 by 1600 pixel displays. There are three rendering nodes and three tracking nodes. 

Each tracking node is connected to an IR camera that is mounted overhead. Unique patterns of 

retro-reflective markers are used to determine locations  and orientations of objects placed on the 

tabletop. Figure 3 shows a group of  people interacting with LambdaTable. 

2.1.2 Parallel Simulation and Visualization

 

Figure 4. Parallel visualization.

	 Traditional parallel visualization techniques attempt to render a part of the entire visualized 

data on a cluster node and transmit these rendered pixels to the visualization host that combines 

pieces into the entire image. This is  shown in Figure 4. Alternatively, the results  can also be dis-

played on the cluster nodes. Traditional parallel or distributed simulations works in a similar fash-

ion by decomposing computational tasks either functionally or spatially. This way, clusters  of 

computers  are efficient for simulating complex problems. However, the traditional use of clusters 

for simulations is  to do intensive and non-interactive calculations. It is possible to use both com-

putational and rendering facilities of cluster nodes to display intermediate results of simulations. 
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Allard [7] discusses coupling of parallel simulation with visualization on rendering nodes of a 

cluster. Their system is  able to interactively run and display a small-scale simulation of two fluids 

and a simulation of a piece of cloth. The interest in parallelism in this  project is to provide sup-

port for larger interaction area, simulation, and data given a scalable display and interaction sys-

tem. It is not directly aimed to speed up the simulations or visualizations.

2.1.3 High Resolution Image Rendering

 The current developments in the area of high resolution image rendering on tiled displays  are 

aimed at bridging the gaps  between data size and the network, visualization, computation, and 

storage resources available on remote or local clusters. All of the known image viewers have limi-

tations and are not ready for highly interactive multi-user collaborative environments. TimV [8] 

relies  highly on virtual memory. Argonne’s image viewer [9] does not give an option of zooming. 

JuxtaView [10], developed at EVL, does  not deal with maintaining interactivity during loading of 

data. The task of interactive navigation is not as crucial as the ability to view the data, however it 

is  important to provide timely user feedback in a direct, interactive system that is also a learning 

tool.

2.1.4 Interactive Applications for Horizontal Displays

 Low-resolution tabletop devices have become very popular in museums [11]. There is  a 

number of interactive pieces employing either tabletops or tiled displays. Some of the more no-

table ones in the domain of entertainment and education are Reactable [12] and Shigureden’s  

tiled floor [13]. Reactable is a collaborative tabletop music instrument that produces sounds when 

users put unique trackable objects  on top of it. The unique objects  represent modular compo-
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nents of audio synthesis  that are able to connect with each other to produce sound. Reactable is a 

multi-user, controlled, collaborative environment. 

Figure 5. Shigureden tiled floor.

	 The tiled floor at Shigureden is  a Nintendo-powered museum exhibit in Arashiyama, Kyoto. 

Location aware Nintendo DS devices are handled by users that walk around a large map of 

Kyoto. The devices are used by museum goers to select locations in Kyoto to be guided to by a 

virtual guide shown on the floor display. The large display also shows animations of city ponds 

and moving cars on the map. Shigureden tiled floor is an inspiration for this work.
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3	 Design and Implementation

	 This  portion of the text goes over design and implementation. Section 3.1 outlines  the overall 

design goals. Section 3.2 describes the rendering system used. Section 3.3 goes over the rendering 

system for high resolution images. Section 3.4 describes  a decentralized model for particle-based 

simulation, its visualization, and the way of interacting with it. Section 3.5 outlines synchroniza-

tion mechanisms. Finally, Section 3.6 analyzes the scalability of  the system.

3.1 Design Goals

	 In order to achieve scalability, this research project will:

	 	 1. Analyze and develop a parallel visualization framework.

	 	 2. Analyze and develop a decentralized simulation model.

	 	 3. Analyze and employ decentralized data access and caching mechanisms.

The main goal is to design a system where individual components work independently of each 

other and independently of  any common shared components as much as possible.

3.2 Basic Renderer

	 The rendering framework for this project was implemented in C/C++ using OpenGL for 

graphics, and FLTK [14] for windowing. It is based on a scene graph, which arranges objets in a 

hierarchical manner making it easy to prevent drawing visual content that is  not visible on a sin-

gle rendering node of the tiled display. MPI [15] and Quanta [16] are used for cluster communi-

cation and synchronization of  graphics and simulations.
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3.2.1 Scene Graph

	 Scene graph is a data structure that is a representation of the spatial arrangement of scene 

objects. The need for a scene graph structure is useful to efficiently determine visibility of scene 

objects in a tiled display environment.

3.2.2 Scene Node

	 A scene node is an object that inherits  certain basic functionality that is accessed during scene 

graph traversal and implements new functionality. This object is  used as a building block to ren-

der visualizations.

3.2.3 Event System

	 Each scene node carries an identification that is  unique on the entire cluster. This way, re-

mote events can be delivered to the right scene objects. A hash table of all scene nodes is  created 

at startup. Addition and removal of scene nodes is handled dynamically by performing relevant 

operations on the hash table. The user interface features in this project are implemented using 

the observer-listener design pattern. User interface objects  follow the same identification scheme 

and are consistent across the rendering nodes of  the cluster.

3.3 High Resolution Image Rendering	

	 This  part of the document goes the design and implementation of the high resolution image 

rendering framework implemented in this project. It builds on traditional techniques in LOD and 

employs concurrency mechanisms to achieve interactive frame rates.
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	 This  image rendering framework uses tiling, texture paging, multi-level caching, compression, 

and threading techniques to provide fast access to any region of interest in an image. High reso-

lution image rendering of a single image is implemented within a single scene node. This allows 

overlaying of  data and the addition of  multiple images in the same context.

Certain assumptions have to be made when dealing with large data in a cluster environment:

	 1. All data may not fit into texture memory of  a rendering node.

	 2. All data may not fit into main memory of  a rendering node.

	 3. All data may not fit into distributed memory of  a cluster.

These assumptions suggest the necessity for out-of-core techniques.

3.3.1 Tiling

	 Tiling is  an important step in large image processing because regularly sized pieces  of image 

can be paged to texture memory and cached more efficiently. For this reason, the entire image is 

processed into a quad-tree pyramid of tiles from coarsest to finest resolution, sub-sampling data 

by a factor at each coarser level. This standard data partitioning scheme allows  us to design an 

efficient data structure for traversing the data.

3.3.2 Indexing

	 A multi-level index array of tiles  is  build for each image. This data structure is  used for gener-

ating data tile requests and traversing the data using a quad tree, which is implicitly defined by 

the index array.
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3.3.3 Compression

	 Compression of image data reduces its storage requirements on disk and in main memory. It 

also decreases the time required to transfer image data to texture memory. Original data is  com-

pressed in DXT1 format using the squish library [17]. Decompression of the data happens  en-

tirely on the GPU. This improves performance when many textures  have to be paged into GPU 

client memory repetitively.

3.3.4 Request System

 Requests  for data are made at multiple system levels. This  allows  us to decouple rendering 

and data access. Figure 6 shows  all possible data requests  in the current implementation. L 1 is  a 

request for a data tile from remote disk to node’s main memory. L 2 is  a request for data tile from 

node’s main memory to node’s texture memory. A more robust solution could also implement 

requests  for transfer of data from a remote node’s  memory instead of the remote disk, however 

such system introduces  an extra level of memory management on the entire cluster. The goal of 

this  particular implementation is  to provide a stable level of interactivity at all times  and not nec-

essarily improve the speed at which data may arrive and be displayed. Instead of a more robust 

memory management system, this  solution implements loading of data into main memory (L 1) 

asynchronously on a thread that runs concurrently with the main thread. Main memory acts as a 

buffer between disk and texture memory. This prevents  the main thread to stall when the remote 

disk is accessed. The remote disk is  currently represented seamlessly via NFS [18] or PVFS [19] 

file systems. In the case of NFS, the data resides  on a disk of only one node, the master node. 

Data access is  therefore always from this  remote disk. When a node tries  to access a piece of data, 

other nodes  requesting data are locked until it finishes. PVFS is much more efficient since data is 
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distributed across disks of the entire cluster, so the loading of data may or may not be directly 

from the local disk. This  prevents  locking from happening as frequently. The threads of L 1 and L 

2 communicate only when new data has  been loaded into the main memory. Figure 7 shows the 

request system in more detail represented in the context of the two threads, the main thread (L 1) 

and the fetcher thread (L 2). Each thread maintains a cache of  tiles.

Remote
Disk

Main 
Memory

Texture
Memory

L 1 L 2

Figure 6. Levels of  requests for a data tile.
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TILE i

L 1 Cache L 2 Cache

L 1 Queue L 2 Queue

In L 1  
Cache

L 1 request DRAWElse

L 2  request

Figure 7. Request system and caches in detail. If  a tile exists in L 2 cache, it is drawn, otherwise 
a request for it is made from L 1 cache. If  it doesn’t exist in either caches, a request is made to 

read it from a remote disk.
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3.3.5 Tile Caching

A B C D

B C D E

C D E F

D E F G

T 1

T 2

T 3

T 4

Figure 8. LRU Cache additions of  4 tiles.

	 The caches described here are caches that exist in memory of each rendering node. Sizes of 

the caches  are set by the user and are represented by the number of data tiles that can be held in 

source memory of a cache. The caches  of tiles in both L 1 and L 2 are implemented as LRU (least 

recently used) caches.  If a tile is present in a cache when it is requested, that tile is pushed to the 

front of the cache. When a new tile is  cached, the least recently used tile is popped off the cache 

and discarded. This  is  illustrated in Figure 8 for caching off four tiles. The L 2 cache introduces 

an extra step when popping because the data contained in this cache may currently be displayed. 

The L 2 cache is actually a restricted LRU implementation. Whether a tile can be safely popped 

off L 2 is determined during traversal of the data and is based on the region of interest (ROI) of 

the rendered image. This may occasionally produce a condition where the texture cache slightly 

exceeds  the desired size limit. However, both caches are updated at regular intervals, so the con-

dition is temporary and may last only a few seconds.
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3.3.6 Data Traversal

(a)

ROI

- - - end

- - - start

Finest

Coarsest

      (b)

ROI Dataset

Figure 9. Region of  interest traversal of  the image pyramid. Side view (a), top view (b). 

 The data is traversed only within the region of interest, which is based on the view frustum. 

Data that falls  outside the view frustum is  culled by comparing the data tile’s  bounding box to the 

view frustum. Since we are working in 2D using orthogonal projection, this test is very simple. 

Each tile’s bounding box is  tested against the left, right, top, and bottom planes of the view frus-

tum. The test that determines  whether something is  inside or outside the view frustum is known 
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as  the frustum test. Only a portion of the entire quad-tree is  traversed at a given time, however 

traversal may not start at the root node. Traversal from the root node for large data increases 

storage requirements  and computation. Oftentimes coarser data is never actually displayed and 

the calculations to display it become unnecessary. For this reason, we start traversal at tiles that 

are several levels  coarser than the current level of detail (LOD). The locations of these tiles are 

determined as the subset of all tiles  at that coarser level that pass  the frustum test. Figure 9 shows 

the traversal of data. Traversal stops at current LOD. The coarsest tile of the image is loaded and 

displayed at all times. This  method decreases  storage requirements, calculations, and data re-

quests when traversing very large images, but creates more unpleasant blending artifacts  when 

zooming in and out with a large frequency of  cache misses.

3.3.7 LOD Approximation

	 Data tile sizes in node coordinates are searched from coarsest to finest until condition (3) is  

met. When the condition is  met, the level of detail of that tile becomes  the LOD level for that 

image. The following equations go over approximating LOD. The idea behind these calculations 

is to find a match between the rendered geometry of a tile and its  pixel size to be displayed on the 

screen.

	 	 	 W W  = P W T W	 	 	 	 	 (1)

	 	 	 H W  = P H T H 	 	 	 	 	 (2)

   W N  H N  S L  ≥  W W  H W  L S   (3)

where,

W N : 	 width of  data tile in scene node coordinates

H N : 	 height of  data tile in scene node coordinates
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W W : 	 width of  data tile in world coordinates

H W : 	 height of  data tile in world coordinates

P W : 	 width of  one screen pixel in world coordinates

P H : 	 height of  one screen pixel in world coordinates

T W : 	 width of  data tile in pixels

T H : 	 height of  data tile in pixels

L : 	 quad-tree level

S : 	 sampling factor

3.4 Particle-Based Simulation

	 This  part of the document goes  over a decentralized particle based simulation and visualiza-

tion model that runs in the screen spaces of  rendering nodes.

3.4.1 Cluster Communication

 Communication between cluster nodes is essential in order to execute updates of the entire 

simulation in sync. The idea is  to distribute particles  spatially across all nodes. This means that 

the simulated particles may travel in and out of the extents  of a node’s  screen space at any time 

during simulation. Figure 10 illustrates a possible path that a particle may take. As an obvious 

solution, it is  possible to route the particles that go outside a node’s extent through one node, such 

as  the master node, and have it calculate where particles should go. However, as  the number of 

particles grows, this becomes  inefficient because one node has to handle sorting of all particles 

and forwarding them to appropriate nodes. 

 A more efficient solution is  to set up communication between nodes that follows the screen 

layout of nodes in the tiled display. This  provides  direct communication links between adjacent 
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nodes without the need of a proxy node. In order to set up this  communication properly, the 

physical layout of nodes has to be taken into account. This  is because the layouts of physical 

screens on each rendering node of the entire tiled display may differ. Rain Table reads the con-

figuration of the screens of rendering nodes  from a file, it is shown in Figure 5. This file provides 

information about the physical mappings  of screens  according to nodes’ host names  and IP ad-

dresses. Assuming that the tiled display is set up as a regular grid of screens, this  configuration 

makes it easy to calculate the exact connections that have to be established between nodes. 

	

Node 1      Node 2

Node 0 Node 3

Figure 10. Example path of  a particle traveling across multiple nodes.

	 Figure 11 shows all communication links necessary to execute simulation updates for the tiled 

display configuration in Figure 12. 
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Figure 11. Example of  a tiled display configuration file. This file starts with some information 
about the tiled display. “Dimensions” keyword describes the number of  columns and rows of  the 
tiled display. “Mullions” keyword is followed by the vertical and horizontal mullions measured in 
inches. “Resolution” is the screen resolution of  each tile. “PPI” is the pixels per inch of  each tile. 
“Machines” is the number of  display nodes which drive the tiled display for each “DisplayNode”. 
“DisplayNode” represents a machine that can have an arbitrary number of  screens. Each screen 

has a mapping described by the tiled column and row within the entire display. “Name” describes 
the host name of  the node. “IP” is the IP address of  the node. “Monitors” describes the map-

pings of  each screen attached to that node with (0,0) located in the lower left.
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Figure 12. Tiled display for the tile configuration file described in figure 11. This figure also 
shows the communication setup for 6 visualization nodes of  irregular physical layout.

	 The diagram in Figure 13 shows an example architecture for a system comprised of  4 nodes. 

In terms of  communication, each node:

	 1. Acts as a server that communicates outgoing simulation data to adjacent nodes.	

	 2. Acts as a client that listens for incoming simulation data from adjacent nodes.

	 3. Acts as a client that communicates with the master node server to synchronize.
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Figure 13. 4-node system architecture. 

3.4.2 Simulation on a Grid

 The simplest way to avoid O(N2) run time is  to partition the simulation space into a static 

regular grid of spatial bins. Other more efficient dynamic methods can be employed, however 

local simulation acceleration methodology is  out of the scope of this  project. Each bin of the 

static grid contains particles currently in its field of view. When a particle moves from one bin to 

another, it is removed from its old bin and put into the new bin. In this setup, neighborhood 

lookups are simply a search in the particle’s own bin and the neighboring bins. A simulation grid 

is local to each node. Its extent is  slightly larger than the renderable extent of a node. This is nec-
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essary to accommodate for remotely located particles in N-body type simulations. Figure 14 

shows a particle and its  field of view of the neighbors. Figure 15 shows  approximate relative sizes 

of the rendering extent and the simulation grid. Each particle has a size, color, type, position, and 

velocity.

Figure 14. Particle neighborhood.

Simulation Grid Rendering Extent

Figure 15. Relative sizes of  rendering extent and simulation grid.

29



3.4.3 Screen Space

	 The particle simulation runs in the screen spaces of the tiled display. In order to effectively 

couple the visualization and computation procedures  on the entire cluster, all nodes have to be 

well balanced. Load balancing will be discussed in a separate section in detail. 

From the point of view of one node, the local procedures as related to simulation and visualiza-

tion pipelines are (Figure 16):

1. Generate simulation input. This  input is the primary source of particles. It is  controlled 

entirely by the user.

2. Perform calculations  and data access for the simulation input that was  generated locally 

and needs to be rendered locally, forward it to the  local visualization pipeline.

3. Perform calculations  and data access  for simulation input that was generated remotely but 

needs to be rendered locally, forward it to the local visualization pipeline.

4. Do load balancing. Perform calculations (data is  forwarded from the origin node) for simu-

lated input from any source that needs to be rendered remotely, send the results back.
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Figure 16. Local procedures. This figure shows an overview of  the local processes taking place 
from the time a particle is generated until until it is visualized.

	 The local simulation pipeline is shown in detail in Figure 17. 
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Figure 17. Local simulation pipeline. This figure shows stages during a particle’s life cycle as it 
moves through the components of  the pipeline on a local node.
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3.4.4 Simulation Zones

 In order to run N-body type simulations  across borders of tiled displays, it  is necessary to de-

fine regions of space close to borders. These regions or zones are used to map remote particles to 

local simulation grids and map local particles to remote simulation grids. This is  an extra step in 

the simulation pipeline when checking for a particle’s intersection with the rendering extent. 

There are three major zones. The first zone is  the local zone where no mapping is necessary. The 

second zone is  a zone that forwards information about its particles to appropriate adjacent nodes. 

These particles  are sent to adjacent node’s  “ghost” zone, which contains information about parti-

cles that are not local to the adjacent node located outside the node’s rendering extent. This way, 

given proper synchronization, a neighborhood query close to a border on any node would 

produce correct results. The union of the local zone and the map zone correspond to a node’s 

local rendering extent. The “ghost” zone is outside of a node’s  rendering extent. The zones are 

illustrated in figure 18. The map and ghost zones  are further divided into sub-zones that follow 

the established 2-way connections to other nodes. Particles  that end up in corner sub-zones, NW, 

NE, SW, and SE, are sent over to multiple nodes. For example, for a node that shares a border 

with other nodes on the north, west, and northwest sides, a particle in zone NW would need to be 

mapped to the north, and the northwest node. The figure illustrates  two points  of view, inbound 

and outbound, as nodes receive remote incoming mappings and send out local ones. When parti-

cles “die” locally or get removed when they jump outside of the map and local zones, messages 

have to be sent to appropriate nodes to indicate that these particles are no longer mapped. When 

moving between sub-zones, this  procedure also has to check if multiple messages need to be sent 

out when particles move outside of  the corner zones.
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Figure 18. Simulation zones. This figure shows outbound and inbound views.   

3.4.5 Visualization Pipeline

 The local particles are drawn into a texture buffer using OpenGL’s framebuffer object exten-

sion. Each particle is  drawn as a point splat of certain size, color, and texture. In OpenGL, the 

splats are drawn as  point sprites  using GL_COORD_REPLACE_ARB extension that generates 

the correct texture coordinates for the vertex processor. A vertex program is used to correctly as-

sign point sizes and types  from attribute arrays. The size of the particles is controlled by the 
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number of particles hashed to a simulation grid cell. Larger sizes represent larger volumes. In-

formation contained in the attribute arrays is  generated during the simulation step while new 

particles are introduced into the system at a set rate at the locations of table pucks. Particles are 

colored according to their type directly in a fragment program. The result texture is  a blending of 

two frames: the current frame, and the previous. Smoothing the two rendering frames results  in 

better perception of motion. The result is blurred using 5x5 kernel Gaussian blurring to render 

metaball-style blobs. For efficiency, this is a two pass process. First, the texture is  blurred horizon-

tally in the fragment program, then vertically. This is illustrated in Figure 19. Figure 20 has a de-

tailed view of  the visualization pipeline. 

!orizontal +aussian

Vertical +aussian

Result +aussian

Figure 19. 2-pass Gaussian blur.
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Figure 20. Visualization pipeline.
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3.4.6 Load Management Mechanisms

	 Since particles are free to move anywhere in the space of interaction, it is  possible for the sys-

tem to become unbalanced. An example of this  is  when all of particles  move to a single node. In 

this  case, it is good to offload / distribute the computation if the simulation step is  CPU-intensive. 

Communication is  somewhat costly. If it is the case that both computation and communication 

have the same cost, increasing the number of computation nodes  does  not provide any perform-

ance benefit. Normally, the computation cost should be greater than the communication cost. 

Instead of using he entire cluster and doing a conventional broadcast at every simulation step, it 

would make sense to instead evaluate whether distribution is necessary. Say that each node can 

do calculations for N number of particles  (normal computation plus load balancing computa-

tion). Then, we could say that if the number of particles grows larger than N/2, distribute the 

computation for N - N/2 particles. This would greatly minimize the communication cost for an 

under-loaded scenario. We can then define a discrete metric for each node to indicate whether it 

is  under-loaded (< N/2), loaded (>N/2), or over-loaded (>N). If distribution is  necessary, the par-

ticles  can then be evenly distributed to under-loaded nodes. When interaction speed and system 

responsiveness is crucial, it is reasonable to employ other mechanisms to control the number of 

simulated particles to ensure a more balanced system. These mechanisms  are hierarchical. On 

the lowest level, it is  possible to limit the number of particles that can be present in a simulation 

grid bin. On the mid-level, it is possible to limit the number of particles that can be present on a 

node. On the highest level, the previous limitations control the number of particles that can be 

present on the entire cluster. On the lowest level, this method removes particles that are not really 

necessary for visualization and greatly decreases  the local load. Another improvement is  a good 

balance between the rate at which particles  are input into a node and the rate at which they exit. 
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This  is achieved by dynamically adjusting the input rate per node based on the rate particles exit 

a node.

	 To assess  the possibility of offloading, it is  necessary to define some metrics for communica-

tion and computation costs.

	 1. Computation cost = 

	 	 	 (number of  particles) * (computation time)

	 2. Communication cost = 

	 	 	 (number of  particles) * (size of  data) + average latency

	 The communication bandwidth is  usually good enough to transfer data. For example, in a 

1Gbit local network, passing 1000 for offloading would mean passing a total of about (5 floats  * 4 

bytes * 1000) 20000 bytes.

	 In theory, this  can be done 4000 times a second. However, theoretical bandwidth does  not 

take into account the latency of packing the data, sending it across PCI bus to the wire, sending it 

from the wire though PCI bus, and unpacking it. It also does not take into account the overhead 

of TCP. These latencies  depend on architecture, efficiency of the packing code, system drivers, 

and etc. Figure 21 lists  round trip TCP latencies in milliseconds for a 1Gbit LAN using a frame 

size of  1500 byes for different packet sizes.
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Figure 21. TCP round trip latencies for 1Gbit LAN.

	 If the communication cost is greater than the cost of computation, the computation is done 

locally. At the start up, an unused connection is established between each node, aka between each 

load balancing client and server, in the cluster. The metrics for each node are gathered by the 

master and distributed to the slaves. The slaves choose under-loaded nodes and distribute the 

computation evenly among them. This is  illustrated in figure 22 (top). Alternatively, these load 

balancing servers  may run on machines completely separate from the tiled display, however this  is 

not implemented in this  project because of the interest in avoiding the use of outside resources. 

The load balancing procedure does  not assume that the data and the information to be gathered 

from the simulation grid is located on the load balancing server. This information is  forwarded 

from the client to the computation server. This minimizes  data access on the remote machine 

while taking advantage of data caching (described in the next section). It is  not guaranteed that 

offloading particles  to a remote machine for computation would always increase performance. 

The chart in figure 22 (bottom) shows that performance is gained only for simulations that re-
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quire longer to complete one simulation step (measured in nanoseconds). For this reason, offload-

ing should be avoided for simple simulations  because the latency of communicating data may be 

longer than the amount of time it takes to complete the simulation locally. Experiments on the 

LambdaTable suggest that offloading should be employed for simulations or sub-processes  that 

take a significant amount of time to compute and, ideally, do not require immediate visualization. 

As the number of nodes increases, there is  an optimal number of nodes that can provide per-

formance benefit. This number would vary for different types of simulations due to the varied 

amount of information that is required to be transfered (based on the simulation type). However, 

when the number of  tiled display nodes is low, local load management methods are more robust.
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Figure 22. Diagram of  offloading (top). Offloading 100 particles of  varied computation time on 
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3.4.7 Data Caching

	 Similar to caching of image blocks  in our high resolution image rendering framework, the 

data required for simulation is cached locally. During a simulation, each particle accesses  some 

data that is  juxtaposed on the map of an area rendered by the image framework. This data access 

operation is a lookup of a single cell of data. This cell is  cached locally if it is  not already loaded. 

The frequency of cache misses is  directly proportional to the amount of simulated input intro-

duced into areas not already covered by any particles.

3.4.8 Multithreading

	 In order to maximize concurrency, the visualization and simulation pipelines  run in separate 

threads. Every time the simulation code is  done with one update, it notifies  the visualization code 

that new simulation data is  available. This  prevents  the visualization pipeline from busy waiting. 

In addition, the generation of simulation input is done on a separate thread placing it randomly 

around the location of  a user puck.

3.5 Synchronization

	 Synchronization is  achieved by using constant communication with the master node. This is a 

centralized synchronization model. The synchronization server broadcasts a message that the 

simulation is  ready to start and blocks until it hears back from all nodes that one simulation step is 

done. On the client side, the simulation pipeline is  blocked until it receives  a message to start. 

Once the client is  finished, it sends a proper message back. The procedure for synchronizing the 

visualization pipeline is similar, but it is  done on a separate thread to ensure concurrency. In this 

synchronization model, the frequency of simulation update and rendering update can be ad-
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justed separately to meet system requirements. Figure 23 goes  over rough synchronization com-

mands.

Sync Server Sync Client

broadcast(Start_Simulation)

blockingRecvAll(Stop_Simulation)

broadcast(New_SimulationState)

blockingRecv(Start_Simulation)

Do local simulation

Communicate to resolve simulation state

send(Stop_Simulation)

T
H
R
E
A
D 

1

broadcast(Start_Visualization)

blockingRecvAll(Stop_Visualization)

nonBlockingRecv(New_SimulationState)
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blockingRecv(Start_Visualization)

Draw local simulation data
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 Figure 23. Synchronization.
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3.6 Scalability

	 This section presents an analysis of  the scalability of  this architecture.

	 Data size:

	 - Can be decentralized using PVFS file system, data is accessed only for cache misses.

	 Output resolution:

- Limited only by the fill rate of the video card on each node and the transfer bus  (AGP/

PCI/PCI-Express).

	 Communication:

- Limited by bandwidth, communication increases  for unbalanced system, stays  consistent for 

a balanced system.

	 Computation:

- All computation is  done locally, unless the load is too heavy, employs load balancing mecha-

nisms that may either offload or decrease the load locally by removing particles  that are not 

important to the visualization.

Interaction Space:

- Limited by scalability of  the tracking system.
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4	 Interaction

	 This section goes over the interaction mode in Rain Table.

4.1 Basic Navigation

	 Rain Table lets  users pan around and zoom into visualizations using trackable pucks. The 

pivot of  zoom is determined by the location of  the zoom puck on top of  the table.

!oom$ &ivot o* +oomin-.ranslation

3a-ni!er5nputs

Figure 24. Pucks with unique retro-reflective markers.

4.2 Magnifiers

	 Magnifiers  provide zoomed versions  of areas under it. A single puck or multiple pucks can be 

assigned to be magnifiers. The magnifier also contains  a version of the visualization under the 

magnifier. In order to make the imagery under by the magnifier more visible, the displayed visu-

alization is a more transparent version of the original visualization. When a magnifier crosses  the 
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border of local rendering extent, the magnifier typically encapsulates  data that is  simulated and 

visualized by separate nodes. This is shown in figure 25.

 

Node A Node B

Figure 25. Magnifier on the border.

4.3 Inputs, Triggers, and Modifiers

	 In order to support a variety of visualizations, we define several widgets. Input widgets  are 

considered to be the entry points  of particles into simulations. They can an be radial or directed. 

Triggers are used to trigger events  at certain areas, such as volcanos. Modifiers can be assigned to 

different types of parameters in simulations. For example, a modifier can be used to interactively 

control the rate at which particles  enter simulations  or the intensity of a volcano eruption. Fig-

ures 26 and 27 show the widgets described.
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Figure 26. Radial and directed inputs.

Figure 27. Trigger (right) and modifier (left). 
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5 	 Applications

	 This  section goes over the applications implemented using the architecture and the prepara-

tion of  data for them.

5.1 Flow Model Calculation

50 1 2 3 4

Figure 28. 1D elevation model.

    
	 In order to utilize the resolution of  tiled displays, the data used to support simulations can be 

very large. Digital elevation models (DEMs) can be used to guide particles around a map juxta-

posed with elevation data. However, the calculation of  correct flow directly from large DEMs is 

not an option at run time due to a large number of  natural depressions in DEMs.  There is a 

number of  GIS applications that provide the means to calculate flow models from digital eleva-

tion models. Some of  this software is GRASS [20], ArcGIS [21], RiverTools [22], and LandSerf  

[23].  However, GRASS is the only known open-source application to provide this feature. 

	 This project implements a single flow (SF) routing calculation on DEMs, however this calcu-

lation is not completely optimized for I/O and is meant to be a straight forward implementation 

of  a well known algorithm [24]. The TerraFlow [25] project implements an I/O efficient method 

to do this calculation on very large grids.
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	 The flow model is calculated directly from elevation data. In a single flow model, any given 

location has only one possible flow direction, the steepest down-slope neighbor. In the multi flow 

(MF) model, flow directions can be assigned to any steepest down-slope neighbors. Multi flow 

models are more realistic, but they take significantly more time to calculate and require more 

storage space. Given a regular grid of  elevations, we can think of  a depression as a single cell or a 

group of  grid cells that do not flow out anywhere. Looking at Figure 28, we can see that this one 

dimensional grid of  elevations contains two major depressions. One includes cells 1 and 2 and 

the other includes cell 4. The spill cells, the cells where all of  the given cells in a depression 

should go through, are cell 3 for the first depression and cell 5 for the second. Figure 29 shows the 

distinction between single cell and multi cell depressions on a 2D grid.
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Figure 29. Singe-cell depression (left) and multi-cell depression (right).

 The algorithm in Figure 31 goes over the calculation of  flow models from DEMs. This algo-

rithm is iterative. The algorithm makes multiple passes through the entire elevation grid. It iden-

tifies depressions and fills them in. To make sure that certain important areas do not get filled in, 

we introduce a depression threshold size. Small to medium sized depressions usually represent 
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insignificant features or errors in elevation created by the process used to record the data. Large 

depressions represent important geographical features and typically should not be filled in. After 

filling in all depressions that meet the threshold criteria, the algorithm calculates a vector of  flow 

for each grid cell using the distance weighted drop. Figure 30 shows how to calculate this vector. 

This calculation uses V as the vector representing direction of  the flow, D as the actual distance 

between the cells (depends on the resolution of  elevation data), E 1 as the elevation at the target 

cell and E 0 as the elevation at origin cell. When all vectors are calculated, each cell vector is in-

terpolated with the next grid cell’s vector in the flow. This produces smoother flows for particle 

tracing routines.

V(-1,1) V(0,1)       
     V(1,1)

V(-1,0) V(0,0) V(1,0)

V(-1,-1)
V(0,-1) (1,-1)

D

A

B

	 	 	 	 	 	 A = V(1,1) ( E1 - E0 ) D

      B = V(1,0) ( E1 - E0 ) D / √2

Figure 30. Vector calculation.
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	 E = Regular grid of  elevation values

	 N D = Number of  depressions

	 N T = Number of  depressions above threshold size

	 D THRES = Threshold cell size of  a depression

	 While ( N D  is not equal to  N T )

	 Do

	 {

	 	 N D = 0 

	 	 N T = 0

	 	 Set the edges of  E to flow out

	 	 Find all single-cell depressions in E and fill them in

	 	 L U = List of  undefined flows

	 	 For each cell in E

	 	 {

	 	   Calculate flow

	 	   If  the flow is undefined push it on to L U

	 	 }

	 	 For each cell in L U

	 	 {

	 	   Fill in undefined flows based on adjacent flows

	 	   If  flows back to the current cell, do not fill in

	 	 }

	 	 L D = List of  multi-cell depressions

	 	 For each cell in L U

	 	 {	 	 	

	 	   D H = Highest bounding elevation

    Recursively examine cell’s boundary

	 	   {	

	 	     D L = List of  connected cells of  a depression

	 	        If  a neighbors value is greater than D H

	 	 	  Then update D H with that value

	 	 	 	 	

	 	 	  If  a neighbor does not already belong to a depression

	 	 	  Then assign it a unique depression ID and push it on to D L

	 	   }

	 	   Push each D L on to L D	

	      N D = N D + 1	
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	 	 }

	 	 For each depression in L D

	 	 {

	      If  (its cell size is lower than D THRES )

	      Then assign all cells the value of  D H

	 	     Else N T = N T  + 1

	 	 }

	 }

	 For each cell in E

	 {

	   Calculate the flow vector based on its flow direction

	 }

	 For each cell in E

	 {

   Interpolate the cell’s flow vector with its target cell’s flow vector

	 }

 

Figure 31. Pseudo code for computing a flow model from DEMs.

5.2 Rainfall Runoff

	 The problem of  rainfall runoff  becomes a simple problem of  particle tracing in a vector field 

calculated directly from a DEM, as described above. It requires minimal calculation since we are 

not interested in visualizing complex CFD, but the direction water takes on a map. The most 

time consuming step is the access of  vector data at each step of  the trace. The movement of  a 

particle across vector field can be described by the following equations:

   P T + ∆T  = P T  + V T      (4)

   V T + ∆T  = MAX ( V T  + D (V T  – V T - ∆T), V MAX )  (5)

   L T + ∆T = L T – ∆T      (6)

	 	 	 	 	 where,

	 	 	 P is position vector
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	 	 	 V is velocity vector

	 	 	 T is time

	 	 	 D is damping

	 	 	 L is particle life

5.3 Sediment Flux

 Here, we model the movement and deposition of sediment in rivers and channels. The 

amount of sediment that can be picked up by water depends  on its velocity and volume. We dis-

cretize this affect to describe three sizes of sediment that would be present in water: small, me-

dium, and large sediment. The algorithm uses  a lookup table to map particle’s velocity and the 

volume of water in the local area to the sediment size that can be picked up. The deposition of 

sediment works  in a similar way. Another lookup table maps a particle’s  (particle that is carrying 

some amount of sediment) velocity and the volume of water in the local area to the sediment size 

that may be deposited. In this  model, large amounts  of small sediment are always present in wa-

ter. On the visualization side, larger sediment is represented by darker colored brown particles 

contained within water.

5.4 Lava Flow

 The flow of  lava follows the topography similarly to the flow of  water, however its physical 

properties and behavior are different. In order to properly simulate lava, a single particle of  lava 

needs to interact with the neighboring ones via neighborhood lookups. The task of  modeling a 

simple flow of  lava is to mimic insulated flow. In an insulated flow, a particle cools down faster if  

there are fewer particles around it. Let’s develop a simple velocity decay scheme. If  the diameter 
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of  a visualized particle is approximately the size of  a spatial bin on the simulation grid, then the 

velocity decay scheme can be approximated as:

  V T + ∆T  = MAX ( V T  + D (V T  – V T - ∆T) – ID (1 +E) 2, V MAX ) (7)

	 This equation is similar to particle tracing with the addition of  insulated flow physics. In this 

equation, LD represents insulation damping and E is the number of  non-empty spatial bins 

around a particle.

5.5 Pyroclastic Flow

Figure 32. Pyroclastic flow of  Mayon Volcano, Pyilippines.

Figure 33. Eruption graph.
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	 Pyroclastic flows are a result of volcanic eruptions  (Figure 32). It is  the movement of a com-

bination of hot gas, ash, and rock, also known as tefra, around the volcano. The basic equation 

for computing the velocity of a particle in the flow is  defined by (8). It is  a simplified version of 

the plinian eruption model. The equation represents a linear relationship between and the veloc-

ity and the time since the initial eruption, where M is the magnitude of the eruption, D is damp-

ing, and T is  the time. For larger eruptions, it is necessary to increase M and decrease D. This is 

because larger plinian columns tend to reach higher altitudes  prior to collapse. Degassing of a 

larger volume flow should take longer than degassing of smaller flows. Figure 33 shows a graph 

of an eruption where M is 60.0 and D is 0.132. Equation (9) defines the relationship between 

stagnation height and particle velocity. Stagnation height is the accumulative height a particle has 

to overcome as it travels  across terrain. If the velocity of a particle is less  than the minimum ve-

locity necessary to overcome this height, the flow is  effected by the terrain, otherwise the flow 

conserves its velocity.

  V T + ∆T  = MAX ( M – DT, V MAX  )     (8)

 H STAG = V MIN 2        V MIN = √ H STAG   (9)

The relationship between the stagnation height and its relative minimum velocity is shown in 

Figure 34.

Stagnation Height Minimum Velocity

20 meters 20 meters / sec.

80 meters 40 meters / sec.

5 meters 10 meters / sec.

Figure 34. Stagnation heights and their relative velocities.
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	 In order to calculate the stagnation height correctly, it is necessary to keep track of  the last 

lowest elevation the particle passed through. This is illustrated in figure 35. The last lowest eleva-

tion would be used to calculate the change in elevation. Then, in order to calculate the stagnation 

height, we would only need to know the change in horizontal position a particle has traveled. 

Equation (10) shows this calculation. Figure 36 goes over the algorithm to calculate and update 

stagnation height.

  H STAG  = √ ( ∆E 2 + ∆D 2 )     (10)

E

D

H STAG
E

Figure 35. Stagnation height.

 
	 E p = Previous elevation

	 E C = Current elevation

	 D = Horizontal distance traveled

	 H = Change in height = E C - E p

	 DIST = Total distance traveled = sqrt( H2 + D2 )

	 MIN_VELOCITY = Stagnation velocity = sqrt(2 * g * DIST)

	 If  MIN_VELOCITY > CURRENT_VELOCITY

	   Take into account the topography

	 Else

	   Velocity is conserved

	   

	 If  E p > E C

	 Then E p = E C

 
 Figure 36. Algorithm to calculate stagnation height.
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5.6 Glacial Movement

Figure 37. Glacier.

 Of the fresh water on Earth, over 75% resides as  ice in the ice caps  and as alpine glaciers 

(Figure 37). Alpine glaciers are important topics of interest in the issue of global warming. The 

physics  of glaciers are very complicated. When snow accumulates  at the thickness  of about 50 

meters, the pressure is  sufficient to turn snow into glacial ice. Ice, under atmospheric pressure, 

behaves  as a brittle solid. Under enough pressure, ice will flow. Near the sides of the glacial chan-

nel, the ice flows slowest due to frictional forces. It is also possible for the entire glacier to slip 

when there is a build up of water under the glacier. This  process is called basal slip and is analo-

gous to ice-skating, where the pressure from the weight of the skater is focused into the blade of 

the skate. For visualization simplicity, we will model only the first type of movement. Glaciers 

form “U” shapes when moving down slopes. The following equation defines  the velocity of a par-

ticle.

  V T + ∆T  = MAX ( V T  + D (V T  – V T - ∆T) + GD (L +R), V MAX ) (11)
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In this  equation, GD is the glacial movement damping, L is the number of non-empty bins to the 

left of a particle, and R is  the number of non-empty bins  to the right of the a particle. This mod-

els the pressure distribution through the glacier. Particles  that are in the middle typically move 

down faster than the ones on the edges  forming “U” shapes. The following diagram (Figure 38) 

shows an example of  velocity vector distribution.

Upslope Downslope

Figure 38. Velocity distribution.

v

Figure 39. Neighborhood lookup.

 To calculate the number of  non-empty bins to the left and right of  a particle, we move along 

the directions perpendicular to a particle’s velocity vector and count the number of  particles in 
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these adjacent bins. This is shown in Figure 39. Enforced by the simulation grid size, there is a 

maximum number of  bins we  can look at, preventing these directional neighborhood queries to 

travel outside of  the node’s local simulation grid. 

5.7 Water Pollution

 The implications of water pollution are very significant. The visualization of rainfall runoff 

shows how water connects different geographic regions. In order to visualize the pollution of wa-

ter, we set up several controllable pollution spots. When rain originates  at that spot, it is color 

coded according to the pollution origin’s  color. The result visualization makes it clear how pollut-

ants travel with water, where they mix together, and where they end up.
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6	 Limitations and Future Work 

	 This  paper presents core software architecture for interactive simulations and visualizations 

using the hardware of tiled displays directly. With rapid development of high speed networks, the 

future work may include interaction and display of remote visualizations, interconnection of sev-

eral remote tiled displays to visualize and interact with real-time simulations. 

	 The current implementation runs in screen spaces of tiled display nodes  and assumes  that 

anything that moves outside of the entire display should be discarded. Future work would include 

routines to offload and update particles around the edges. 

	 The load management mechanisms  suggested in this  work are not tuned to do well for a par-

ticular simulation. Future work may include adaptive methods to choose appropriate load man-

agement based on simulation requirements. Furthermore, the current system relies on manual 

adjustment of simulation parameters for different data. This can be improved by using more in-

formation about the data at run time, such as its current level of  detail.

	 Some of the developments in the domain of GPGPU produced impressive results  in the area 

of interactive simulations. The parallelism in the fragment processing of GPUs is  used to simu-

late complex phenomena more efficiently. The use of GPUs  for simulation, however, is limiting 

when the simulation is  required to use large data. Frequent transfer of data between the GPU 

and CPU can create very significant bottlenecks. However, asynchronous  methods can be em-

ployed to transfer data more efficiently. On demand paging of data for simulations to the GPU 

using textures as  storage units would allow direct lookup into the data from fragment programs  in 

screen space. This data can then be used for in a GPU-based particle system. When moving to 

scalable, distributed design, such system would still constantly need to do readbacks from the 

GPU memory in order to synchronize the simulation state with adjacent nodes.
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	 To reduce the frequency of cache misses, distributed memory and caching can be employed. 

This  can greatly reduce remote disk access and speed up visualizations. At EVL, an application 

called LambdaRAM [26] is being developed to address  access  of massive data over high speed 

gigabit networks in data-intensive applications.

	 An infrastructure called OptiStore [27], also developed at EVL, can be employed in the fu-

ture to efficiently create large data repositories  for use in simulations and visualizations, which 

would make Rain Table software more robust and usable for real geo-scientists.
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7	 Conclusion

	 Scalable software systems  are needed when moving to high resolution interactive environ-

ments. This paper presents a method to use high resolution tiled displays to support interactive 

group-oriented visualizations  of real-time geoscience phenomena for science education in muse-

ums or classrooms.

	 The contribution of  this work is:

1. Development of a decentralized particle-based simulation model suitable for real-time in-

teraction and applicable to many types of  simulations.

2. Development of an approach to efficient coupling of visualizations and particle-based 

simulations on high resolution tiled displays.

3. Application of traditional out-of-core and LOD methods  to interactive high resolution en-

vironments.

4. Application of  visualization research technology to informal science education.
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8	 Current System

	 Rain Table software was demoed at SC (Supercomputing) 2007. It will be deployed at the 

Science Museum of  Minnesota in summer 2008. The current system includes a few datasets:

1. Mount Rainier National Park located 54 miles south east of Seattle, Washington. Mt. 

Rainier is an active volcano covered in 35 square miles of snow and glacial ice. Image pixel 

dimensions: 13,938 by 20,282, elevation data dimensions: 1,194 by 1,738.
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2. The Big Island of  Hawaii. It is home to a few dozen volcanos including the world’s largest 

volcano Mauna Loa. 40% of  Mauna Loa’s surface is covered by lava flows that are less than 

1000 years old. Image (30 meter) pixel dimensions: 4,096 by 4,096, elevation data dimen-

sions: 2,048 by 2,048.
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3. Minnehaha Creek, Minneapolis, Minnesota. The area is one of  the testbed sites of  St. An-

thony Falls Laboratory (National Center for Earth-Surface Dynamics). Image (0.5 meter) 

pixel dimensions: 8,821 by 5,032, elevation data dimensions: 1,198 by 488.
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4. The ice covered Lake Bonney, Antarctica. Located in McMurdo Dry Valleys. Image pixel 

dimensions: 2,471 by 1,678, elevation data dimensions: 1,119 by 823.
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5. Mars data collected using Mars Orbiter Laser Altimeter over 2 years beginning in fall 

1997. Shows 4 large volcanoes. Olympus Mons (upper left) is 24 km high and 550 km in di-

ameter. Image (4 meter) pixel dimensions: 9,027 by 5,599, elevation data dimensions: 2,256 

by 1,399.
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6. McMurdo station antarctica. The data was used to visualize drainage around the station to 

find problematic areas. Image (1 meter) pixel dimensions: 3,922 by 2,658, elevation data di-

mensions: 3,412 by 2,556.
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9	 Gallery

 

Figure 40. Users interacting with Mars data.

 

Figure 41. Users interacting with McMurdo data (Antarctica).
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Figure 42. Rainfall Runoff  (Mars data).

Figure 43. Sediment Flux (Hawaii Big Island data).
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Figure 44. Pyroclastic Flow (Mars data).

Figure 45. Glaciers (Mount Rainier National Park).

71



CITED LITERATURE

[1]  Krumbholz, C., Leigh, J., Johnson, A., Renambot, L., and Kooima, R.: “LambdaTable: 
High resolution tiled display table for interacting with large visualizations,” In Workshop for 
Advanced Collaborative Environments (WACE). 2005.

[2] Chen, X. and Davis, J. “LumiPoint: Multi-User Laser-Based Interaction on Large Tiled 
Displays”. In Displays, Vol. 23, pp. 205-212. 2002.

[3] Stodle, D. Hagen, T. Bjorndalen, J. Anshus, O. “Gesture-Based, Touch-Free Multi-User 
Gaming on Wall-Sized, High-Resolution Tiled Displays”. In Proceedings of the 4th Interna-
tional Symposium on Pervasive Gaming Applications, PerGames 2007, pp. 72-83. 2007.

[4] Stodle, D. Hagen, T. Bjorndalen, J. Anshus, O. “A system for Hybrid Vision and Sound 
Based Interaction with Distal and Proximal Targets on Wall-Sized, High-Resolution Tiled 
Displays”. In CVHCI07. pp. 59-68. 2007.

[5] Ball, R. and North, C. “Effects of Tiled High-Resolution Display on Basic Visualization 
and Navigation Tasks”. In Extended abstracts of ACM Conference on Human Factors in Computer 
Systems (HCI 2005), pp. 1196-1199. Portland, Oregon. 2005.

[6] Rogers, Y. and S. Lindley, “Collaborating around vertical and horizontal large interactive 
displays: which way is best?” Interacting with Computers, 2004. 16(6): p. 1133-1152.

[7] J. Allard , B. Raffin , F. Zara . “Coupling Parallel Simulation and Multi-display Visualiza-
tion on a PC Cluster,” In Euro-par 2003, Klagenfurt, Austria, August 2003.

[8] 	 Tiled Image Viewer (TimV). San Diego Supercomputing Center.

[9] 	 Cluster-based Image Viewer. Justin Blinns, Michael E. Papka, Rick Stevens. Argonne National 
Labs.

[10]  N. K. Krishnaprasad et al, “JuxtaView – a tool for interactive visualization of large im-
agery on scalable tiled displays,” In Proceedings of  IEEE Cluster, 2004.

[11] Tom Geller. “Interactive Tabletop Exhibits  in Museums and Galleries”. IEEE Computer 
Graphics and Applications, 26(5): 6-11. 2006.

[12] Jorda, S. Geiger, G. Alonso, M. Kaltenbrunner, M. “The reacTable: Exloring the Synergy 
between Live Music Performance and Tangible Tabletop Interfaces”. Proceedings of the first 
international conference on “Tangible and Embedded Interaction” (TEI07). Baton Rouge, Louisiana.

[13]	 An exhibition facility themed around the Ogura Hyakunin Isshu (a classic anthology of 
100 traditional Japanese poems from the 7th to 13th centuries  composed by 100 poets) 
built in Arashiyama, Kyoto, in January 2006 and operated by the Ogura Hyakunin Isshu 
Cultural Foundation.

72

http://ralyx.inria.fr/2003/publications.html?projet=apache&nom=Allard
http://ralyx.inria.fr/2003/publications.html?projet=apache&nom=Allard
http://ralyx.inria.fr/2003/publications.html?projet=apache&nom=Raffin
http://ralyx.inria.fr/2003/publications.html?projet=apache&nom=Raffin
http://ralyx.inria.fr/2003/publications.html?projet=apache&nom=Zara
http://ralyx.inria.fr/2003/publications.html?projet=apache&nom=Zara


[14]	 FLTK - Fast Light Toolkit, (http://www.fltk.org).

[15]	 MPICH Implementation of  the Message Passing Interface (MPI),
(http://www-unix.mcs.anl.gov/mpi).

[16] E. He et al, “Quanta: a toolkit for high performance data delivery over photonic net-
works,” Journal of Future Generation Computer Systems, volume 19, issue 6, pp. 919-933, 
August 2003.

[17] 	 Brown, C. Squish DXT Compression Library, 
(http://www.sjbrown.co.uk/?code=squish).

[18]	 NFS - Networked File System (http://nfs.sourceforge.net)

[19]	 PVFS - Parallel Virtual File System (http://www.parl.clemson.edu/pvfs)

[20]	 GRASS GIS - Geographic Resource Analysis Support System, (http://grass.itc.it).

[21]	 ArcGIS, (http://www.esri.com/software/arcgis).

[22]	 RiverTools, (http://www.rivertools.com).

[23]	 LandSerf, (http://www.soi.city.ac.uk/~jwo/landserf).

[24] Jenson, S. and Dominique, J. “Extracting topographic structure from digital elevation 
data for geographic information system analysis”. Photogrammetric Engineering and Remote 
Sensing, 54(1), pp. 1593-1600. 1988.

[25] Laura Toma, Rajiv Wickremesinghe, Lars Arge, Jeffrey S. Chase, Jeffrey Scott Vitter, Pat-
rick N. Halpin, and Dean Urban. “Flow computation on massive grids”. In Proc. ACM 
Symposium on Advances in Geographic Information Systems, 2001

[26] Vishwanath, V., Shimizu, T., Takizawa, M., Obana, K., Leigh, J. “Towards  Terabit/s Sys-
tems: Performance Evaluation of Multi-Rail Systems”. Proceedings of Supercomputing 2007 
(SC 2007). Reno, NV. 2007.

[27] Zhang, C. “OptiStore: An On-Demand Data Processing Middleware for Very Large 
Scale Interactive Visualization”. Thesis. 2007.

73

http://www.fltk.org
http://www.fltk.org
http://www-unix.mcs.anl.gov/mpi
http://www-unix.mcs.anl.gov/mpi
http://www.sjbrown.co.uk/?code=squish
http://www.sjbrown.co.uk/?code=squish
http://nfs.sourceforge.net
http://nfs.sourceforge.net
http://www.parl.clemson.edu/pvfs
http://www.parl.clemson.edu/pvfs
http://grass.itc.it
http://grass.itc.it
http://www.esri.com/software/arcgis
http://www.esri.com/software/arcgis
http://www.rivertools.com
http://www.rivertools.com
http://www.soi.city.ac.uk/~jwo/landserf
http://www.soi.city.ac.uk/~jwo/landserf


VITA

NAME		 	 Dmitri Nikolai Svistula

EDUCATION	 M.S. Computer Science, University of  Illinois at Chicago, 2008

	 	 	 B.S., Computer Science, University of  Illinois at Chicago, 2004

EXPERIENCE	 Graduate Research Assistant, Electronic Visualization Laboratory, Univer-
sity of  Illinois at Chicago, 2005 - 2008

	 Visualization Developer Intern, Science Museum of  Minnesota, 2005

	 REU, Electronic Visualization Laboratory, University of  Illinois at Chi-
cago, 2004

PUBLICATIONS	 Kirkby, K., Morin, P., Svistula, D., Leigh, J., Johnson, A., Currier, R., 
Campbell, K. Development of  a Visualization Rain Table: A Hard Rain's 
A-Gonna Fall, Poster at American GeoPhysical Union Fall meeting 2007, 
San Francisco, CA, December 10-14, 2007.

	 Leigh, J., Johnson, A., Renambot, L., Sandin, D., DeFanti, T., Brown, M., 
Jeong, B., Jagodic, R., Krumbholz, C., Svistula, D., Hur, H., Kooima, R., 
Peterka, T., Ge, J., Falk, C., Emerging from the CAVE: Collaboration in 
Ultra High Resolution Environments, to appear in the proceedings of  the 
First International Symposium on Universal Communication, Kyoto, Ja-
pan, June 14-15, 2007, pp. 96-99. 

	 Morin, P., Kirkby, K., Campbell, K., Hamilton, P., Schmidt, B., Svistula, 
D., Leigh, J., Renembot, L., Johnson, A., Flat Earth, Round Earth: Two 
New Visualization Systems for Formal and Informal Geoscience Educa-
tion, To appear in GSA Abstracts with Programs Vol. 38.7, Philadelphia, 
PA, October 22-25, 2006.

74


